
tion point on the f(o) curve; m, porosity; q(t), resultant "specific" flow rate of fluid 
through a current tube; q(t) = Q(t)/ah and q(t) = Q(t)/2~h, respectively, for linear and ra- 
dial displacement; Q(t), volume flow rate of the phases; a and h, thickness and the width 
of the bedrock; DI and ~2, viscosity of the displacing fluid and of the displaced fluid, re- 
spectively; k~(o) and k2(o), relative penetration factors; f(o), Buckley--Leverett function; 
D, velocity of propagation of a saturation discontinuity; o + and ~-, saturation levels, re- 
spectively, to the "left" and to the "right" of a discontinuity; t, time; and x, space co- 
ordinate. 
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NUMERICAL ANALYSIS OF TRANSVERSE STREAMLINING 

OF A STAGGERED BUNDLE OF TUBES 

I. A. Belov and N. A. Kudryavtsev UDC 532.517.2:532.54 

The difference scheme of second-order precision [I] is applied to the analysis 
of transverse streamlining of coaxial circular tubes in a staggered bundle by a 
viscous incompressible fluid. 

We consider transverse streamlining of a bundle of tubes with a circular cross section 
(cylinders) of the same radius R* (here and henceforth the asterisk will denote a dimen- 
sional quantity) staggered parallel in a stream of a viscous heat-conducting incompressible 
fluid (Fig. i). The distances between the axes of neighboring cylinders are L* in the longi- 
tudinal direction (along the stream) and L** in the transverse direction (across the stream). 
Effects due to the finiteness of the bundle dimensions are eliminated in our calculations 
by considering a pair of cylinders in one of the inside rows. Such a formulation of the 
problem will make it possible, with finite dimensions L* and L~*, to use the conditions of 
periodicity of the solution at both the entrance to and the exit from the region covered by 
calculations, and to disregard any possible flow asymmetry even at relatively high values 
of the Reynolds number. 

The problem willbe numerically solved by a difference approximation of the Navier-- 
Stokes and energy equations according to the Arakawa scheme [i] of second-order precision 
for convective terms. The derivatives with respect to time are approximated with central 
differences. The region ABGHCEF of the mathematical model (Fig. i) is bounded by the planes 
of symmetry AB and HC, the planes BG, CD and MN, EF in which the conditions of periodicity 
are satisfied, and the surfaces AF, GH of cylinders. For calculating the flow around each 
cylinder, we place its center at the origin of its own polar system of coordinates (r, e) 
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Fig. i. Region of the mathematical 
model and difference grid. 

and write the corresponding equations in this system. In this way the region of the mathe- 
matical model becomes divided into two subregions ABCEF and BGHC, "attached," respectively, 
to the first (upstream) and the second cylinder. Accordingly, we will call them, respective- 
ly, the first and the second flow subregion. It is to be noted that a difficulty of purely 
computational nature arises in the collocation of the solutions for both subregions at the 
diagonal BC. Quite evidently, this difficulty is due to the use of polar systems of coordi- 
nates and can be eliminated by the use of Cartesian systems of coordinates, as has been pro- 
posed in another study [2]. On the basis of experience gathered in the solution of this prob- 
lem, one can assert, however, that a Cartesian system of coordinates not only requires a 
large direct-access computer memory but also, with a sufficiently high nodal density of the 
grid near the surface of a cylinder, is very sensitive to pseudoviscosity due to errors of 
approximation of differential equations with difference equations (the streamlines near the 
surface of a cylinder intersect the mathematical cells almost diagonally). One can mention 
at least two more methods of eliminating these difficulties. In one study [3] a hybrid 
Cartesian-polar grid was used for solving a problem analogous to this one. In our study 
only a polar grid was used and the solution was obtained according to a special algorithm of 
calculating the flow parameters near rectilinear boundaries. In these authors' view, the 
latter method is more rational: it avoids the difficulties of collocating the solutions at 
the boundary between regions with different grids and does not require as large a computer 
memory as required for hybrid grids. 

The fundamental dimensionless system of Navier--Stokes and energy equations is written 
in the form of the system of the vortex transfer equations in vorticity ~, flow function 4, 
and static stream temperature T 

-- ~ = exp (-- 2~  A~ ; (I) 

of = o ,  ( 2 )  
- exp 77- + Z +Re 

where f ~ ~ and y = 0 in the equation of vortex transfer, f ~ T and Y = 1 in the equation 
of energy, E = in r is the transformed radial coordinate, and g = ~2/~E2 + ~2/~@2" 

The characteristic quantities in Eqs. (I) and (2) are the radius R* of the cylinders 
and the mean-flow-volume velocity U* of the stream at a section not passing through any cyl- 
inder. The dimensionless temperature T is related to the actual temperature T through the 
equality T = (T* -- T* )/(T* -- T* ), where T* and T* are constant surface temperatures at, 

Wl W2 Wl Wl W2 

respectively, the first and the second cylinder. Both the Reynolds number and the Prandtl 
number, as well as the local Nusselt number introduced in the course of calculations, are 
defined conventionally in terms of the characteristic diameter 2R* of the cylinders. 

Let us now formulate the boundary conditions needed for solving the system of Eqs. (I) 
and (2). In the planes of symmetry, we have 
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Fig. 2. Lines of constant flow function @ and constant temperature T for L = L: = 
3.9 and Npr = 0.7, with NRe: (a) 20, (b) i000. 

Fig. 3. Profiles of the pressure (a) and the local Nusselt number (b) over the 
surface of a cylinder for L = LI = 3.9 and Npr = 0.7, with NRe: I) Re = 20; 2) 
40; 3) 125; 4) 250; 5) 500; 6) I000. 

A B : ~ = ~ = I O T / O 0 = O ;  H C : ~ : L ~ ;  ~ = O T / O 0 = O .  

On the surface of the cylinders we have 

AF : ~ I  = 0 ; .  <owl = - -  2~w:+:/h z; Tw1= O ; 

G H : ~ . ~ = L i ;  o ~ 2 = 2 ( ~ 2 - - ~ . 2 + : ) / A  z ;  T . 2 = l .  

Here 1 and 2 refer, respectively, to the first and the second flow subregion; ~w~+x and 
~w2+l, flow functions in grid layers closest to the first and the second cylinder, respec- 
tively; and h, taken uniform along both ~ and e. 

The conditions of periodicity are stipulated pairwise along lines EF, NM, GB, DC. 
Let a point i lie on any of these lines in the first subregion and a point j lie on the cor- 
responding line in the second subregion, both points equidistant from the surface of a cyl- 
inder (Fig. i). Then the conditions of periodicity can be expressed as 

We will now establish the boundary conditions in the zone along the diagonal BC for 
both flow subregions. For convenience, we introduce for L and L~ the relations L = exp 
((m-- l)h), LI = exp((mx -- l)h). We then proceed as follows (Fig. i). 

i. On each radial line in, say, the first subregion we locate the boundary node clos- 
est to BC outside the field ABCD. When such nodes on the neighboring radii lie on differ- 
ent circles, then we add the necessary number of nodes in accordance with the requirements 
of the Arakawa scheme. Having the boundary nodes 1 and 3 on neighboring circles, e.g., we 
add node 2 for solving Eq. (2) according to the given scheme at node 4. 

2. Each thus determined node in the first subregion will lie in some cell of the sec- 
ond subregion BGHC. Let node 5 lie in the cell with nodes 6, 7, 8, 9, for instance. The 
parameters at node 5 can be calculated from the parameters at the nodes surrounding it 
through, say, linear interpolation. Then 

h = td6 + t~f7 + &f8 + td9 (3) 

where f - 4, ~, or T and where I i are the interpolation factors, the latter remaining con- 
stant throughout the entire calculation process. 
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Relations analogous to relation (3) can be established for the second flow subregion. 
The choice of interpolation factors will be the same here as for the first subregion. 

The numerical procedure includes solution of the dynamic problem and the thermal prob- 
lem. Solving the former involves calculation, sequentially in time, of the flow field in 
both first and second subregions with the boundary conditions appropriately established. The 
calculation continues until the steady state is reached. As the criterion of steadiness 
serves an approximately zero derivative of the drag coefficient C x with respect to time for 
one cylinder, this coefficient being the sum of its pressure component Cxp and friction com- 

ponent Cxf 

~I2  2~ 

3 ~I 2 

~/2 2~ ( 4 )  
4 

Cx,-- NRe (/o, tsinOdO+ f mw~sinOdO). 
rc 3~/2  

The pressure at the surface of a cylinder in the first of expressions (4) is found from the 
equation of motion 

0 0 

P<L,- NRe . -0 .~  | t 0~ /~,2 ] -I-const, 
3~/2 

where the constant can be equated to zero without any loss of generality. 

After the dynamic problem has been solved, we proceed with the thermal problem and use 
here the already calculated fields of the flow function. The numerical procedure now in- 
volves establishing the boundary conditions and solving the energy Eq. (2) for each subre- 
gion of the mathematical model in successive time steps. The calculation continues until 
the steady state is reached, as a criterion of steadiness serving an approximately zero de- 
rivative of the mean-over-the-perimeter Nusselt number 

~/2 2 

a~/2 

with respect to time. 

Calculations were made for the variant L = Lz = 3.9 and Npr = 0.7, NRe = 20, 40, 125, 
250, 500, i000. The parameters of the computation grid for this numerical experiment were 
At = 0o01 and h = ~/30. The resulting flow patterns are shown in Fig. 2a, b, where they are 
described by lines of constant flow function and constant temperature. The calculations have 
revealed that as the Reynolds number increases, so do the dimensions of the circulation zone 
in the wake behind a cylinder, and the maximum value of the flow function in the vortex also 
increases monotonically. The vortex behind a cylinder does not close through the surface of 
the next cylinder downstream, however, even when NRe = i000. 

The profiles of pressure Pw and the local Nusselt number over the surface of a cylinder 
are shown in Fig. 3a, b. We note that at NRe = i000 there appear fluctuations of the Nus- 
selt number in the vicinity of the least thermally loaded point 0 = 280* (this region is in- 
dicated in Fig. 3b by a dash line), although the mean Nusselt number reaches a fully defined 
steady value even in this case. 

The dependence of the drag coefficient Cx, the mean (over the perimeter of a cylinder) 
Nusselt number NNum, and also the pressure drop Ap across the given segment of the tube bun- 
dle on the Reynolds number is shown in Fig. 4, that pressure drop being an important parame- 
ter for comparing the calculations with experimental data. It is equal to the sum of the 
pressure drops across the cylinder surface, along the BA axis, and along the HC axis [3]. 
For comparison, in Fig. 4 have also been plotted experimental data on Ap [4, 5]. It is to 
be noted that the Reynolds number was NRe ~ i000 in the experiment in study [4] and NRe ~ 21 
in the experiment in study [5]. For this reason, calculations were compared with experi- 
mental data only at points corresponding to the extreme values of the Reynolds number (NRe = 
20 and I000). 
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Fig. 4. Dependence of the drag 
coefficient Cx, the mean Nusselt 
number NNum, and the pressure 
drop Ap between two neighboring 
tubes in tandem in one row on the 
Reynolds number for L = LI = 3.9 
and Npr = 0.7: i) Cx, 2) NNum, 
3) Ap (calculation), 4) experi- 
mental data [4], 5) experimental 
data [5]. 

The close agreement between calculated and experimentally determined pressure drop 
across the intertubular space deserves, therefore, particular attention. This result of 
purely practical importance raises the expectation that the method developed here can be 
used for solving problems of streamlining of tubular heat exchange surfaces and optimizing, 
on this basis, the design of heat exchangers in terms of minimum energy losses. Such prob- 
lems are now in most cases solved on the basis of experimental studies [6]. 

NOTATION 

R, radius of a cylinder; L* and LI, distances between the axes of neighboring cylinders 
in the longitudinal direction (along the stream) and in the transverse direction (across the 
stream); r, e, polar coordinates; ~, e, transformed coordinates; U, mean velocity in the 
largest section (not passing through any cylinder); T, temperature; ~, vorticity; 4, flow 
function; p, pressure; t, time; h, step in the difference grid; At, time step; NRe , Reynolds 
number; Npr , Prandtl number; NNu , Nusselt number; NNum, mean (over the perimeter of a cylin- 
der) Nusselt number; I, convective terms; A, Laplace operator; y, power exponent which deter- 
mines the kind of Eq. (2); Cxp , coefficient of pressure drag; Cxf, coefficient of frictional 
drag; C x = Cxp + Cxf , resultant drag coefficient; Z, interpolation factor; m, ml, number of 
nodes on radial grid lines; an asterisk denotes a dimensional quantity; subscripts: w, con- 
ditions at the wall of a cylinder; I, first cylinder; 2, second cylinder; and i, j, grid 
nodes. 
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